3.11.79 \(\int (a+i a \tan (e+f x)) (c+d \tan (e+f x))^3 \, dx\) [1079]

Optimal. Leaf size=107 \[ a (c-i d)^3 x+\frac {a (i c+d)^3 \log (\cos (e+f x))}{f}+\frac {i a (c-i d)^2 d \tan (e+f x)}{f}+\frac {a (i c+d) (c+d \tan (e+f x))^2}{2 f}+\frac {i a (c+d \tan (e+f x))^3}{3 f} \]

[Out]

a*(c-I*d)^3*x+a*(I*c+d)^3*ln(cos(f*x+e))/f+I*a*(c-I*d)^2*d*tan(f*x+e)/f+1/2*a*(I*c+d)*(c+d*tan(f*x+e))^2/f+1/3
*I*a*(c+d*tan(f*x+e))^3/f

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {3609, 3606, 3556} \begin {gather*} \frac {i a d (c-i d)^2 \tan (e+f x)}{f}+\frac {i a (c+d \tan (e+f x))^3}{3 f}+\frac {a (d+i c) (c+d \tan (e+f x))^2}{2 f}+\frac {a (d+i c)^3 \log (\cos (e+f x))}{f}+a x (c-i d)^3 \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[e + f*x])*(c + d*Tan[e + f*x])^3,x]

[Out]

a*(c - I*d)^3*x + (a*(I*c + d)^3*Log[Cos[e + f*x]])/f + (I*a*(c - I*d)^2*d*Tan[e + f*x])/f + (a*(I*c + d)*(c +
 d*Tan[e + f*x])^2)/(2*f) + ((I/3)*a*(c + d*Tan[e + f*x])^3)/f

Rule 3556

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3606

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c - b
*d)*x, x] + (Dist[b*c + a*d, Int[Tan[e + f*x], x], x] + Simp[b*d*(Tan[e + f*x]/f), x]) /; FreeQ[{a, b, c, d, e
, f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]

Rule 3609

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*
((a + b*Tan[e + f*x])^m/(f*m)), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rubi steps

\begin {align*} \int (a+i a \tan (e+f x)) (c+d \tan (e+f x))^3 \, dx &=\frac {i a (c+d \tan (e+f x))^3}{3 f}+\int (c+d \tan (e+f x))^2 (a (c-i d)+a (i c+d) \tan (e+f x)) \, dx\\ &=\frac {a (i c+d) (c+d \tan (e+f x))^2}{2 f}+\frac {i a (c+d \tan (e+f x))^3}{3 f}+\int \left (a (c-i d)^2+i a (c-i d)^2 \tan (e+f x)\right ) (c+d \tan (e+f x)) \, dx\\ &=a (c-i d)^3 x+\frac {i a (c-i d)^2 d \tan (e+f x)}{f}+\frac {a (i c+d) (c+d \tan (e+f x))^2}{2 f}+\frac {i a (c+d \tan (e+f x))^3}{3 f}-\left (a (i c+d)^3\right ) \int \tan (e+f x) \, dx\\ &=a (c-i d)^3 x+\frac {a (i c+d)^3 \log (\cos (e+f x))}{f}+\frac {i a (c-i d)^2 d \tan (e+f x)}{f}+\frac {a (i c+d) (c+d \tan (e+f x))^2}{2 f}+\frac {i a (c+d \tan (e+f x))^3}{3 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(219\) vs. \(2(107)=214\).
time = 3.47, size = 219, normalized size = 2.05 \begin {gather*} \frac {(\cos (f x)-i \sin (f x)) \left (12 (c-i d)^3 f x \cos (e+f x) (\cos (e)-i \sin (e))-6 (c-i d)^3 \text {ArcTan}(\tan (2 e+f x)) \cos (e+f x) (\cos (e)-i \sin (e))-3 i (c-i d)^3 \cos (e+f x) \log \left (\cos ^2(e+f x)\right ) (\cos (e)-i \sin (e))-2 d \left (-9 c^2+9 i c d+4 d^2\right ) \sin (f x) (i+\tan (e))+2 d^3 \sec ^2(e+f x) \sin (f x) (i+\tan (e))+d^2 \cos (e) \sec (e+f x) (i+\tan (e)) (9 c-3 i d+2 d \tan (e))\right ) (a+i a \tan (e+f x))}{6 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[e + f*x])*(c + d*Tan[e + f*x])^3,x]

[Out]

((Cos[f*x] - I*Sin[f*x])*(12*(c - I*d)^3*f*x*Cos[e + f*x]*(Cos[e] - I*Sin[e]) - 6*(c - I*d)^3*ArcTan[Tan[2*e +
 f*x]]*Cos[e + f*x]*(Cos[e] - I*Sin[e]) - (3*I)*(c - I*d)^3*Cos[e + f*x]*Log[Cos[e + f*x]^2]*(Cos[e] - I*Sin[e
]) - 2*d*(-9*c^2 + (9*I)*c*d + 4*d^2)*Sin[f*x]*(I + Tan[e]) + 2*d^3*Sec[e + f*x]^2*Sin[f*x]*(I + Tan[e]) + d^2
*Cos[e]*Sec[e + f*x]*(I + Tan[e])*(9*c - (3*I)*d + 2*d*Tan[e]))*(a + I*a*Tan[e + f*x]))/(6*f)

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 155, normalized size = 1.45

method result size
norman \(\left (-3 i a \,c^{2} d +i a \,d^{3}+a \,c^{3}-3 a c \,d^{2}\right ) x +\frac {\left (3 i a c \,d^{2}+a \,d^{3}\right ) \left (\tan ^{2}\left (f x +e \right )\right )}{2 f}+\frac {i a \,d^{3} \left (\tan ^{3}\left (f x +e \right )\right )}{3 f}-\frac {i a d \left (3 i c d -3 c^{2}+d^{2}\right ) \tan \left (f x +e \right )}{f}-\frac {\left (-i a \,c^{3}+3 i a c \,d^{2}-3 a \,c^{2} d +a \,d^{3}\right ) \ln \left (1+\tan ^{2}\left (f x +e \right )\right )}{2 f}\) \(149\)
derivativedivides \(\frac {a \left (\frac {i d^{3} \left (\tan ^{3}\left (f x +e \right )\right )}{3}+\frac {3 i c \,d^{2} \left (\tan ^{2}\left (f x +e \right )\right )}{2}+3 i c^{2} d \tan \left (f x +e \right )-i d^{3} \tan \left (f x +e \right )+\frac {d^{3} \left (\tan ^{2}\left (f x +e \right )\right )}{2}+3 c \,d^{2} \tan \left (f x +e \right )+\frac {\left (i c^{3}-3 i c \,d^{2}+3 c^{2} d -d^{3}\right ) \ln \left (1+\tan ^{2}\left (f x +e \right )\right )}{2}+\left (-3 i c^{2} d +i d^{3}+c^{3}-3 c \,d^{2}\right ) \arctan \left (\tan \left (f x +e \right )\right )\right )}{f}\) \(155\)
default \(\frac {a \left (\frac {i d^{3} \left (\tan ^{3}\left (f x +e \right )\right )}{3}+\frac {3 i c \,d^{2} \left (\tan ^{2}\left (f x +e \right )\right )}{2}+3 i c^{2} d \tan \left (f x +e \right )-i d^{3} \tan \left (f x +e \right )+\frac {d^{3} \left (\tan ^{2}\left (f x +e \right )\right )}{2}+3 c \,d^{2} \tan \left (f x +e \right )+\frac {\left (i c^{3}-3 i c \,d^{2}+3 c^{2} d -d^{3}\right ) \ln \left (1+\tan ^{2}\left (f x +e \right )\right )}{2}+\left (-3 i c^{2} d +i d^{3}+c^{3}-3 c \,d^{2}\right ) \arctan \left (\tan \left (f x +e \right )\right )\right )}{f}\) \(155\)
risch \(-\frac {2 i a \,d^{3} e}{f}-\frac {i a \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) c^{3}}{f}+\frac {3 i a \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) c \,d^{2}}{f}+\frac {6 i a \,c^{2} d e}{f}-\frac {2 a \,c^{3} e}{f}+\frac {6 a c \,d^{2} e}{f}+\frac {2 a d \left (18 i c d \,{\mathrm e}^{4 i \left (f x +e \right )}-9 c^{2} {\mathrm e}^{4 i \left (f x +e \right )}+9 d^{2} {\mathrm e}^{4 i \left (f x +e \right )}+27 i c d \,{\mathrm e}^{2 i \left (f x +e \right )}-18 c^{2} {\mathrm e}^{2 i \left (f x +e \right )}+9 d^{2} {\mathrm e}^{2 i \left (f x +e \right )}+9 i c d -9 c^{2}+4 d^{2}\right )}{3 f \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{3}}-\frac {3 a \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) c^{2} d}{f}+\frac {a \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) d^{3}}{f}\) \(253\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(f*x+e))*(c+d*tan(f*x+e))^3,x,method=_RETURNVERBOSE)

[Out]

1/f*a*(1/3*I*d^3*tan(f*x+e)^3+3/2*I*c*d^2*tan(f*x+e)^2+3*I*c^2*d*tan(f*x+e)-I*d^3*tan(f*x+e)+1/2*d^3*tan(f*x+e
)^2+3*c*d^2*tan(f*x+e)+1/2*(-3*I*c*d^2-d^3+I*c^3+3*c^2*d)*ln(1+tan(f*x+e)^2)+(I*d^3-3*I*c^2*d-3*c*d^2+c^3)*arc
tan(tan(f*x+e)))

________________________________________________________________________________________

Maxima [A]
time = 0.51, size = 150, normalized size = 1.40 \begin {gather*} -\frac {-2 i \, a d^{3} \tan \left (f x + e\right )^{3} + 3 \, {\left (-3 i \, a c d^{2} - a d^{3}\right )} \tan \left (f x + e\right )^{2} - 6 \, {\left (a c^{3} - 3 i \, a c^{2} d - 3 \, a c d^{2} + i \, a d^{3}\right )} {\left (f x + e\right )} + 3 \, {\left (-i \, a c^{3} - 3 \, a c^{2} d + 3 i \, a c d^{2} + a d^{3}\right )} \log \left (\tan \left (f x + e\right )^{2} + 1\right ) + 6 \, {\left (-3 i \, a c^{2} d - 3 \, a c d^{2} + i \, a d^{3}\right )} \tan \left (f x + e\right )}{6 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))*(c+d*tan(f*x+e))^3,x, algorithm="maxima")

[Out]

-1/6*(-2*I*a*d^3*tan(f*x + e)^3 + 3*(-3*I*a*c*d^2 - a*d^3)*tan(f*x + e)^2 - 6*(a*c^3 - 3*I*a*c^2*d - 3*a*c*d^2
 + I*a*d^3)*(f*x + e) + 3*(-I*a*c^3 - 3*a*c^2*d + 3*I*a*c*d^2 + a*d^3)*log(tan(f*x + e)^2 + 1) + 6*(-3*I*a*c^2
*d - 3*a*c*d^2 + I*a*d^3)*tan(f*x + e))/f

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 288 vs. \(2 (95) = 190\).
time = 1.08, size = 288, normalized size = 2.69 \begin {gather*} -\frac {18 \, a c^{2} d - 18 i \, a c d^{2} - 8 \, a d^{3} + 18 \, {\left (a c^{2} d - 2 i \, a c d^{2} - a d^{3}\right )} e^{\left (4 i \, f x + 4 i \, e\right )} + 18 \, {\left (2 \, a c^{2} d - 3 i \, a c d^{2} - a d^{3}\right )} e^{\left (2 i \, f x + 2 i \, e\right )} + 3 \, {\left (i \, a c^{3} + 3 \, a c^{2} d - 3 i \, a c d^{2} - a d^{3} + {\left (i \, a c^{3} + 3 \, a c^{2} d - 3 i \, a c d^{2} - a d^{3}\right )} e^{\left (6 i \, f x + 6 i \, e\right )} + 3 \, {\left (i \, a c^{3} + 3 \, a c^{2} d - 3 i \, a c d^{2} - a d^{3}\right )} e^{\left (4 i \, f x + 4 i \, e\right )} + 3 \, {\left (i \, a c^{3} + 3 \, a c^{2} d - 3 i \, a c d^{2} - a d^{3}\right )} e^{\left (2 i \, f x + 2 i \, e\right )}\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right )}{3 \, {\left (f e^{\left (6 i \, f x + 6 i \, e\right )} + 3 \, f e^{\left (4 i \, f x + 4 i \, e\right )} + 3 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))*(c+d*tan(f*x+e))^3,x, algorithm="fricas")

[Out]

-1/3*(18*a*c^2*d - 18*I*a*c*d^2 - 8*a*d^3 + 18*(a*c^2*d - 2*I*a*c*d^2 - a*d^3)*e^(4*I*f*x + 4*I*e) + 18*(2*a*c
^2*d - 3*I*a*c*d^2 - a*d^3)*e^(2*I*f*x + 2*I*e) + 3*(I*a*c^3 + 3*a*c^2*d - 3*I*a*c*d^2 - a*d^3 + (I*a*c^3 + 3*
a*c^2*d - 3*I*a*c*d^2 - a*d^3)*e^(6*I*f*x + 6*I*e) + 3*(I*a*c^3 + 3*a*c^2*d - 3*I*a*c*d^2 - a*d^3)*e^(4*I*f*x
+ 4*I*e) + 3*(I*a*c^3 + 3*a*c^2*d - 3*I*a*c*d^2 - a*d^3)*e^(2*I*f*x + 2*I*e))*log(e^(2*I*f*x + 2*I*e) + 1))/(f
*e^(6*I*f*x + 6*I*e) + 3*f*e^(4*I*f*x + 4*I*e) + 3*f*e^(2*I*f*x + 2*I*e) + f)

________________________________________________________________________________________

Sympy [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 223 vs. \(2 (88) = 176\).
time = 0.50, size = 223, normalized size = 2.08 \begin {gather*} - \frac {i a \left (c - i d\right )^{3} \log {\left (e^{2 i f x} + e^{- 2 i e} \right )}}{f} + \frac {- 18 a c^{2} d + 18 i a c d^{2} + 8 a d^{3} + \left (- 36 a c^{2} d e^{2 i e} + 54 i a c d^{2} e^{2 i e} + 18 a d^{3} e^{2 i e}\right ) e^{2 i f x} + \left (- 18 a c^{2} d e^{4 i e} + 36 i a c d^{2} e^{4 i e} + 18 a d^{3} e^{4 i e}\right ) e^{4 i f x}}{3 f e^{6 i e} e^{6 i f x} + 9 f e^{4 i e} e^{4 i f x} + 9 f e^{2 i e} e^{2 i f x} + 3 f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))*(c+d*tan(f*x+e))**3,x)

[Out]

-I*a*(c - I*d)**3*log(exp(2*I*f*x) + exp(-2*I*e))/f + (-18*a*c**2*d + 18*I*a*c*d**2 + 8*a*d**3 + (-36*a*c**2*d
*exp(2*I*e) + 54*I*a*c*d**2*exp(2*I*e) + 18*a*d**3*exp(2*I*e))*exp(2*I*f*x) + (-18*a*c**2*d*exp(4*I*e) + 36*I*
a*c*d**2*exp(4*I*e) + 18*a*d**3*exp(4*I*e))*exp(4*I*f*x))/(3*f*exp(6*I*e)*exp(6*I*f*x) + 9*f*exp(4*I*e)*exp(4*
I*f*x) + 9*f*exp(2*I*e)*exp(2*I*f*x) + 3*f)

________________________________________________________________________________________

Giac [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 597 vs. \(2 (95) = 190\).
time = 0.75, size = 597, normalized size = 5.58 \begin {gather*} \frac {-3 i \, a c^{3} e^{\left (6 i \, f x + 6 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) - 9 \, a c^{2} d e^{\left (6 i \, f x + 6 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) + 9 i \, a c d^{2} e^{\left (6 i \, f x + 6 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) + 3 \, a d^{3} e^{\left (6 i \, f x + 6 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) - 9 i \, a c^{3} e^{\left (4 i \, f x + 4 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) - 27 \, a c^{2} d e^{\left (4 i \, f x + 4 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) + 27 i \, a c d^{2} e^{\left (4 i \, f x + 4 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) + 9 \, a d^{3} e^{\left (4 i \, f x + 4 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) - 9 i \, a c^{3} e^{\left (2 i \, f x + 2 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) - 27 \, a c^{2} d e^{\left (2 i \, f x + 2 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) + 27 i \, a c d^{2} e^{\left (2 i \, f x + 2 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) + 9 \, a d^{3} e^{\left (2 i \, f x + 2 i \, e\right )} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) - 18 \, a c^{2} d e^{\left (4 i \, f x + 4 i \, e\right )} + 36 i \, a c d^{2} e^{\left (4 i \, f x + 4 i \, e\right )} + 18 \, a d^{3} e^{\left (4 i \, f x + 4 i \, e\right )} - 36 \, a c^{2} d e^{\left (2 i \, f x + 2 i \, e\right )} + 54 i \, a c d^{2} e^{\left (2 i \, f x + 2 i \, e\right )} + 18 \, a d^{3} e^{\left (2 i \, f x + 2 i \, e\right )} - 3 i \, a c^{3} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) - 9 \, a c^{2} d \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) + 9 i \, a c d^{2} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) + 3 \, a d^{3} \log \left (e^{\left (2 i \, f x + 2 i \, e\right )} + 1\right ) - 18 \, a c^{2} d + 18 i \, a c d^{2} + 8 \, a d^{3}}{3 \, {\left (f e^{\left (6 i \, f x + 6 i \, e\right )} + 3 \, f e^{\left (4 i \, f x + 4 i \, e\right )} + 3 \, f e^{\left (2 i \, f x + 2 i \, e\right )} + f\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(f*x+e))*(c+d*tan(f*x+e))^3,x, algorithm="giac")

[Out]

1/3*(-3*I*a*c^3*e^(6*I*f*x + 6*I*e)*log(e^(2*I*f*x + 2*I*e) + 1) - 9*a*c^2*d*e^(6*I*f*x + 6*I*e)*log(e^(2*I*f*
x + 2*I*e) + 1) + 9*I*a*c*d^2*e^(6*I*f*x + 6*I*e)*log(e^(2*I*f*x + 2*I*e) + 1) + 3*a*d^3*e^(6*I*f*x + 6*I*e)*l
og(e^(2*I*f*x + 2*I*e) + 1) - 9*I*a*c^3*e^(4*I*f*x + 4*I*e)*log(e^(2*I*f*x + 2*I*e) + 1) - 27*a*c^2*d*e^(4*I*f
*x + 4*I*e)*log(e^(2*I*f*x + 2*I*e) + 1) + 27*I*a*c*d^2*e^(4*I*f*x + 4*I*e)*log(e^(2*I*f*x + 2*I*e) + 1) + 9*a
*d^3*e^(4*I*f*x + 4*I*e)*log(e^(2*I*f*x + 2*I*e) + 1) - 9*I*a*c^3*e^(2*I*f*x + 2*I*e)*log(e^(2*I*f*x + 2*I*e)
+ 1) - 27*a*c^2*d*e^(2*I*f*x + 2*I*e)*log(e^(2*I*f*x + 2*I*e) + 1) + 27*I*a*c*d^2*e^(2*I*f*x + 2*I*e)*log(e^(2
*I*f*x + 2*I*e) + 1) + 9*a*d^3*e^(2*I*f*x + 2*I*e)*log(e^(2*I*f*x + 2*I*e) + 1) - 18*a*c^2*d*e^(4*I*f*x + 4*I*
e) + 36*I*a*c*d^2*e^(4*I*f*x + 4*I*e) + 18*a*d^3*e^(4*I*f*x + 4*I*e) - 36*a*c^2*d*e^(2*I*f*x + 2*I*e) + 54*I*a
*c*d^2*e^(2*I*f*x + 2*I*e) + 18*a*d^3*e^(2*I*f*x + 2*I*e) - 3*I*a*c^3*log(e^(2*I*f*x + 2*I*e) + 1) - 9*a*c^2*d
*log(e^(2*I*f*x + 2*I*e) + 1) + 9*I*a*c*d^2*log(e^(2*I*f*x + 2*I*e) + 1) + 3*a*d^3*log(e^(2*I*f*x + 2*I*e) + 1
) - 18*a*c^2*d + 18*I*a*c*d^2 + 8*a*d^3)/(f*e^(6*I*f*x + 6*I*e) + 3*f*e^(4*I*f*x + 4*I*e) + 3*f*e^(2*I*f*x + 2
*I*e) + f)

________________________________________________________________________________________

Mupad [B]
time = 5.07, size = 122, normalized size = 1.14 \begin {gather*} \frac {\mathrm {tan}\left (e+f\,x\right )\,\left (3{}\mathrm {i}\,a\,c^2\,d+3\,a\,c\,d^2-1{}\mathrm {i}\,a\,d^3\right )}{f}+\frac {\ln \left (\mathrm {tan}\left (e+f\,x\right )+1{}\mathrm {i}\right )\,\left (1{}\mathrm {i}\,a\,c^3+3\,a\,c^2\,d-3{}\mathrm {i}\,a\,c\,d^2-a\,d^3\right )}{f}+\frac {{\mathrm {tan}\left (e+f\,x\right )}^2\,\left (\frac {a\,d^3}{2}+\frac {3{}\mathrm {i}\,a\,c\,d^2}{2}\right )}{f}+\frac {a\,d^3\,{\mathrm {tan}\left (e+f\,x\right )}^3\,1{}\mathrm {i}}{3\,f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(e + f*x)*1i)*(c + d*tan(e + f*x))^3,x)

[Out]

(tan(e + f*x)*(3*a*c*d^2 - a*d^3*1i + a*c^2*d*3i))/f + (log(tan(e + f*x) + 1i)*(a*c^3*1i - a*d^3 - a*c*d^2*3i
+ 3*a*c^2*d))/f + (tan(e + f*x)^2*((a*d^3)/2 + (a*c*d^2*3i)/2))/f + (a*d^3*tan(e + f*x)^3*1i)/(3*f)

________________________________________________________________________________________